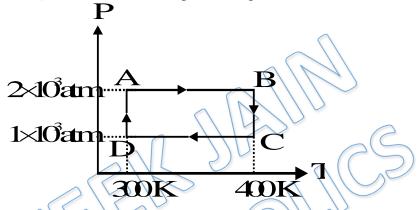


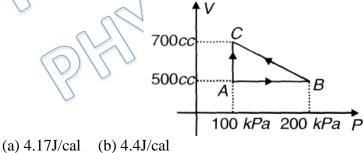
DPP-4 (Thermodynamics)

Video Solution on Website:-

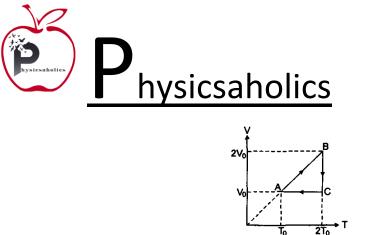
https://physicsaholics.com/home/courseDetails/60

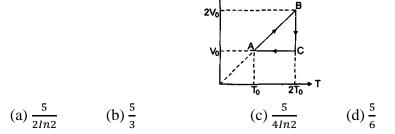

Video Solution on YouTube:-

https://youtu.be/zghuOgPWEPU


Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/78


Q 1. 1/R (R is universal gas constant) moles of an ideal gas (γ =1.5) undergoes a cyclic process (ABCDA) as shown in fig. Assuming the gas to be ideal. If the net heat exchanger is 10x Joules, find the value of x ? [In 2 = 0.7].


- Q 2. One mole of an ideal gas (mono-atomic) at temperature T₀ expands slowly according to law P = cV (c is constant). If final temperature is 2T₀, heat supplied to gas is (a) $2RT_0$ (b) (3/2) RT_0 (c) PT
 - (c) RT_0 (d) (1/2) RT_0
- Q 3. A gas is taken through cyclic process ABCA is shown in figure. If 2.4 cal. of heat is given in the process, what is value of J?

- (c) 4.1 J/cal (d) None of these
- Q 4. Heat is supplied to a diatomic gas at constant pressure. The ratio of $\Delta Q : \Delta U : W$ is: (a) 5:3:2
 (b) 5:2:3
 (c) 7:5:2
 (d) 7:2:5
- Q 5. An ideal monoatomic gas undergoes a cyclic process ABCA as shown in the figure. The ratio of heat absorbed during AB to the work done on the gas during BC is:\

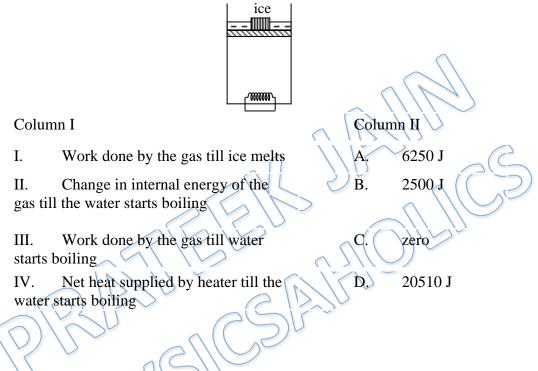
2

Q 6. A gas is expanded from volume V_0 to $2V_0$ under three different processes. Process 1 is isobaric, process 2 is isothermal and process 3 is adiabatic. Let ΔQ_1 , ΔQ_2 and ΔQ_3 be the heat absorbed by gas in these three processes. Then:


 $2V_0$ V_0 (a) $\Delta Q_1 > \Delta Q_2 > \Delta Q_3$ (b) $\Delta Q_1 < \Delta Q_2 < \Delta Q_3$ (c) $\Delta Q_2 < \Delta Q_1 < \Delta Q_3$ (d) $\Delta Q_2 > \Delta Q_3 > \Delta Q_1$

Q 7. Certain amount of an ideal gas are contained in a closed vessel. The vessel is moving with a constant velocity v. The molar mass of gas is M. The rise in temperature of the gas when the vessel is suddenly stopped is : (γ = adiabatic

- Q 8. A monoatomic gas undergoes a process given by 2dU + 3dW = 0, then the process is: (a) isobaric (b) adiabatic (c) isothermal (d) none
- Q 9. STATEMENT - 1 Adiabatic expansion is always accompanied by fall in temperature. because STATEMENT - 2In adiabatic process, volume is inversely proportional to temperature.
- Q 10. *n* moles of an ideal monatomic gas undergoes a process in which the temperature changes with volume as $T = KV^2$. If the temperature of the gas changes from T_0 to $4T_0$ then


(a) work done by the gas is $3nRT_0$

3

- (b) heat supplied to the gas is $4 nRT_0$
- (c) work done by the gas is $(3/2)nRT_0$
- (d) heat supplied to the gas is $\frac{3}{2}nRT_0$
- Q 11. A block of ice mass 10 gm is in thermal equilibrium with a water bath containing 10 gm of water which is kept on a conducting movable massless piston on a cylinder containing 3 moles of an ideal diatomic gas in thermal equilibrium with water. The walls of cylinder are adiabatic and heat lost to surroundings is negligible. The gas is heated slowly by a heater. (Latent heat = 80 cal/gm, specific heat of water = 1 cal/gm, R = 25/3 J/mol *K*, mechanical equivalent of heat = 4.2 J/cal)

Answer Key

Q.1 7	Q.2 a	Q.3 a	Q.4 c	Q.5 c
Q.6 a	Q.7 b	Q.8 d	Q.9 c	Q.10 c
Q.11 I – C, II – A, III – B, IV – D				